Chapter 9: Problem 26
Let \(\left\\{X_{s}\right\\}\) be a finite-state irreducible Markov chain having the transition probabilities \(\| P_{i j} \mid N_{i, j=1^{*}}\). There then exists a stationary distribution \(\pi\), i.e., a vector \(\pi(1), \ldots, \pi(N)\) satisfying \(\pi(i) \geq 0, i=1, \ldots, N, \sum_{i=1}^{N} \pi(i)=1\), and $$ \pi(j)=\sum_{i=1}^{N} \pi(i) P_{i j}, \quad j=1, \ldots, N $$ Suppose \(\operatorname{Pr}\left\\{X_{0}=i\right\\}=\pi(i), i=1, \ldots, N\). Show that \(\left\\{X_{n}\right\\}\) is weakly mixing, hence ergodic.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.