Chapter 9: Problem 24
A stochastie process \(\left\\{X_{n}\right\\}\) is said to be weakly mixing if, for all sets \(A, B\) of real sequences \(\left(x_{1}, x_{2}, \ldots\right)\), $$ \begin{aligned} &\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Pr}\left\\{\left(X_{1}, X_{2}, \ldots\right) \in A \quad \text { and }\left(X_{k}, X_{k+1}, \ldots\right) \in B\right\\} \\ &=\operatorname{Pr}\left\\{\left(X_{1}, X_{2}, \ldots\right) \in A\right\\} \times \operatorname{Pr}\left\\{\left(X_{1}, X_{2}, \ldots\right) \in B\right\\} \end{aligned} $$ Show that every weakly mixing process is ergodic. Remark: To verify weakly mixing, it suffices to show, for every \(m=1,2, \ldots\), and all sets \(A, B\) of vectors \(\left(x_{1}, \ldots, x_{m}\right)\), that $$ \begin{aligned} &\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \operatorname{Pr}\left\\{\left(X_{1}, \ldots, X_{m}\right) \in A \quad \text { and }\left(X_{k+1}, \ldots, X_{k+m}\right) \in B\right\\} \\ &=\operatorname{Pr}\left(\left(X_{1}, \ldots, X_{m}\right) \in A\right\\} \times \operatorname{Pr}\left\\{\left(X_{1}, \ldots, X_{m}\right) \in B\right\\} \end{aligned} $$