A stochastie process \(\left\\{X_{n}\right\\}\) is said to be weakly mixing if,
for all sets \(A, B\) of real sequences \(\left(x_{1}, x_{2}, \ldots\right)\),
$$
\begin{aligned}
&\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}
\operatorname{Pr}\left\\{\left(X_{1}, X_{2}, \ldots\right) \in A \quad \text {
and }\left(X_{k}, X_{k+1}, \ldots\right) \in B\right\\} \\
&=\operatorname{Pr}\left\\{\left(X_{1}, X_{2}, \ldots\right) \in A\right\\}
\times \operatorname{Pr}\left\\{\left(X_{1}, X_{2}, \ldots\right) \in
B\right\\}
\end{aligned}
$$
Show that every weakly mixing process is ergodic.
Remark: To verify weakly mixing, it suffices to show, for every \(m=1,2,
\ldots\), and all sets \(A, B\) of vectors \(\left(x_{1}, \ldots, x_{m}\right)\),
that
$$
\begin{aligned}
&\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}
\operatorname{Pr}\left\\{\left(X_{1}, \ldots, X_{m}\right) \in A \quad \text {
and }\left(X_{k+1}, \ldots, X_{k+m}\right) \in B\right\\} \\
&=\operatorname{Pr}\left(\left(X_{1}, \ldots, X_{m}\right) \in A\right\\}
\times \operatorname{Pr}\left\\{\left(X_{1}, \ldots, X_{m}\right) \in
B\right\\}
\end{aligned}
$$