Chapter 9: Problem 17
Find the minimum mean square error linear predictor of \(X_{n+1}\) given \(X_{n}\), \(X_{n-1}, \ldots, X_{0}\) in the following nonstationary linear model: \(\theta_{0}, \zeta_{1}, \zeta_{2}, \ldots\), and \(\varepsilon_{0}, \varepsilon_{1}, \ldots\) are all uncorrelated with zero means. The variances are \(E\left[\theta_{0}^{2}\right]=v_{0}^{2}\), \(E\left[\zeta_{k}^{2}\right]=v^{2}\), and \(E\left[\varepsilon_{k}^{2}\right]=\sigma^{2}\), where \(v^{2}=\alpha v_{0}^{2}, \alpha=v_{0}^{2}\left(v_{0}^{2}+\sigma^{2}\right) .\) Finally, \(X_{n}=\) \(\theta_{n}+\varepsilon_{n}\), where \(\theta_{n+1}=\theta_{n}+\zeta_{n+1}, n=0,1, \ldots\) (We interpret \(\left\\{X_{n}\right\\}\) as a noise distorted observation on the \(\theta\) process.) Answer: $$ \begin{aligned} &\hat{X}_{0}=0 \\ &\hat{X}_{k}=\alpha X_{k-1}+(1-\alpha) X_{k-1}, \text { for } k=1,2, \ldots \end{aligned} $$ where \(\alpha=v_{0}^{2} /\left(v_{0}^{2}+\sigma^{2}\right) .\)