Chapter 9: Problem 14
Let \(\left\\{X_{n}\right\\}\) be a zero-mean covariance stationary process having positive spectral density function \(f(\omega)\) and variance \(\sigma_{x}^{2}=1 .\) Kolmogorov's formula states $$ \sigma_{e}^{2}=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log 2 \pi f(\omega) d \rho\right\\} $$ where \(\sigma_{e}^{2}=\inf E\left[\left|\hat{X}_{n}-X_{n}\right|^{2}\right]\) is the minimum mean square linear prediction error of \(X_{n}\) given the past. Verify Kolmogorov's formula when $$ R(v)=\gamma^{l v \mid}, \quad v=0, \pm 1, \ldots $$ with \(|\gamma|<1\)