Chapter 8: Problem 15
Let \(X_{n}\) be a discrete branching process with associated probability generating function \(\varphi(s)\) and let \(\varphi_{n}(s)=\sum_{k=0}^{\infty} \operatorname{Pr}\left\\{X_{n}=k\right\\} s^{k}\). Assume that \(\varphi^{\prime}(1)>1\) Let \(\tilde{X}_{n}\) denote the number of all the particles in the nth generation which have an infinite line of descent. Show that the probability generating function for \(\tilde{X}_{n}\) is $$ \sum_{k=0}^{\infty} \operatorname{Pr}\left\\{\bar{X}_{n}=k \mid \bar{X}_{0}=X_{0}=1\right\\} s^{k}=\frac{\varphi_{n}(s(1-q)+q)-q}{1-q} $$ where \(q\) is the probability of extinction. Hint: Note that for \(k \geq 1\) $$ \operatorname{Pr}\left\\{\tilde{X}_{n}=k \mid \dot{X}_{0}=1, X_{0}=1\right\\}=\frac{\sum_{i=k}^{\infty} \operatorname{Pr}\left\\{\tilde{X}_{n}=k, X_{n}=l \mid X_{0}=1\right\\}}{\operatorname{Pr}\left\\{\bar{X}_{0}=1 \mid X_{0}=1\right\\}} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.