Chapter 7: Problem 24
Let \(W(t)\) be a Brownian motion with positive drift \(\mu>0\) and variance
\(\sigma^{2}\). Let \(M(t)=\max _{0 \leq u \leq t} W(u)\) and \(Y(t)=M(t)-W(t)\).
Fix \(a>0\) and \(y>0\), and let
$$
T(a)=\min \\{t: M(t)=a\\}, \quad S(y)=\min \\{t: Y(t)=y\\}
$$
Establish that
$$
\operatorname{Pr}\\{T(a)