Chapter 7: Problem 20
Set $$ p(x, t)=\frac{1}{\sqrt{t}} \exp \left(x^{2} / 2 t\right), \quad t>0 $$ Show that \(p(X(t), a+t)\) is a martingale for \(a>0\).
Chapter 7: Problem 20
Set $$ p(x, t)=\frac{1}{\sqrt{t}} \exp \left(x^{2} / 2 t\right), \quad t>0 $$ Show that \(p(X(t), a+t)\) is a martingale for \(a>0\).
All the tools & learning materials you need for study success - in one app.
Get started for free\(\left\\{f_{\theta}(X(t), t)\right\\}\) is a martingale for any real parameter \(\theta\), where \(f_{\theta}(x, t)=\) \(\exp \left\\{\theta x-\frac{1}{2} \theta^{2} t\right\\} .\) Use the martingale \(f_{\theta}(X(t), t)+f_{-\theta}(X(t), t)\), where \(\theta=\sqrt{2 \lambda}\) to show $$ E\left[e^{-\lambda T}\right]=\frac{1}{\cosh (\sqrt{2 \lambda} a)} $$ where \(T=\min \\{t: X(t)=+a\) or \(X(t)=-a\\}\).
Show that the probability of the event \(\left|X\left(t_{1}\right)-X\left(t_{0}\right)\right|>\xi\), given that \(X(t)\) takes on an extreme value \([X(t)\) has two extreme values] over the interval \(\left(t_{0}, t_{1}\right)\) at either \(t_{0}\) or \(t_{1}\), is \(\exp \left(-\xi^{2} / 2\left(t_{1}-t_{0}\right)\right), t_{0}>0\)
For \(n=1,2, \ldots\) and \(k=1, \ldots, 2^{n}\), set $$ \Delta_{n k}=X\left(\frac{k}{2^{n}}\right)-X\left(\frac{k-1}{2^{n}}\right) $$ where \(X(t)\) is standard Brownian motion. Show \(E\left[S_{n+1} \mid S_{n}\right]=\frac{1}{2}\left(S_{n}+1\right)\), where \(S_{n}=\sum_{k=1}^{2 n} \Delta_{n k}^{2}\).
Prove Kolmogorov's inequality for Brownian motion: $$ \operatorname{Pr}\left\\{\sup _{0 \leq u \leq t}|X(u)|>\varepsilon\right\\} \leq t / \varepsilon^{2}, \quad \varepsilon>0 . $$
Let \(W(t)\) be a Brownian motion with positive drift \(\mu>0\) and variance
\(\sigma^{2}\). Let \(M(t)=\max _{0 \leq u \leq t} W(u)\) and \(Y(t)=M(t)-W(t)\).
Fix \(a>0\) and \(y>0\), and let
$$
T(a)=\min \\{t: M(t)=a\\}, \quad S(y)=\min \\{t: Y(t)=y\\}
$$
Establish that
$$
\operatorname{Pr}\\{T(a)
What do you think about this solution?
We value your feedback to improve our textbook solutions.