Chapter 7: Problem 19
\(\left\\{f_{\theta}(X(t), t)\right\\}\) is a martingale for any real parameter \(\theta\), where \(f_{\theta}(x, t)=\) \(\exp \left\\{\theta x-\frac{1}{2} \theta^{2} t\right\\} .\) Use the martingale \(f_{\theta}(X(t), t)+f_{-\theta}(X(t), t)\), where \(\theta=\sqrt{2 \lambda}\) to show $$ E\left[e^{-\lambda T}\right]=\frac{1}{\cosh (\sqrt{2 \lambda} a)} $$ where \(T=\min \\{t: X(t)=+a\) or \(X(t)=-a\\}\).