Chapter 7: Problem 18
Let \(X(t)\) be standard Brownian motion, and for \(\varepsilon>0\) and \(T>1\) let \(g_{e,},(x)\) be the conditional probability density for \(X(1)\), given \(X(t) \geq-\varepsilon\) for all \(t \leq T\). Show $$ \lim _{t \rightarrow \infty \atop T \rightarrow \infty} g_{\varepsilon, T}(x)=\sqrt{\frac{2}{\pi}} x^{2} \exp \left(-x^{2} / 2\right) $$ Remark: This is the distribution of \(R(1)\) in a 3 -dimensional Bessel process.