Chapter 6: Problem 39
Let \(\left\\{Y_{n}\right\\}\) be a nonnegative submartingale and suppose \(b_{n}\) is a nonincreasing sequence of positive numbers. Suppose \(\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right) E\left[Y_{n}\right]<\infty .\) Prove that $$ \lambda \operatorname{Pr}\left\\{\sup _{k \geq 1} b_{k} Y_{k}>\lambda\right\\}<\sum_{k=1}^{\infty}\left(b_{k}-b_{k+1}\right) E\left[Y_{k}\right] $$