Chapter 6: Problem 30
Let \(Y_{1}, Y_{2}, \ldots\) be independent identically distributed positive rando?n variables having finite mean \(\mu\). For fixed \(0<\beta<1\), let \(a\) be the smallest value \(u\) for which \(u \geq \beta E\left[u \vee Y_{1}\right]=\beta E\left[\max \left\\{u, Y_{1}\right\\}\right]\). Set \(f(x)=a \vee x\). Show that \(\left\\{\beta^{\prime \prime} f\left(M_{n}\right)\right\\}\) is a nonegative supermartingale, where \(M_{n}=\max \left\\{Y_{1}, \ldots, Y_{n}\right\\}\) whence \(a=f(0) \geq E\left[\beta^{T} f\left(M_{T}\right)\right]\) for all Markov times \(T\). Finally establish that \(a=E\left[\beta^{T} M_{T *}\right]\) for \(T^{*}=\min \left\\{n \geq 1: Y_{n} \geq a\right\\} .\) Thus, \(T^{*}\) maximizes \(E\left[\beta^{T} M_{T} \mid\right.\) over all Markov times \(T\).