Chapter 6: Problem 26
Let 0 be an absorbing state in a success runs Markov chain \(\left\\{X_{n}\right\\}\) having Irunsition probabilities \(P_{00}=1\) and \(P_{i, i+1}=p_{i}=1-P_{l, 0}\) for \(i=1,2, \ldots . .\) ??uppose \(p_{i} \geq p_{i+1} \geq \ldots\), and let \(a\) be the unique value for which \(a p_{a-1} /(a-1)>\) \(\mathrm{I} \cdot(a+1) p_{a} / a .\) Define $$ f(i)= \begin{cases}0, & \text { for } \quad i=0 \\ a p_{i} p_{i+1} \cdots p_{a-1}, & \text { for } \quad 1 \leq i