Let \(X, X_{1}, X_{2}, \ldots\) be independent identically distributed random
varialhi'm having negative mean \(\mu\) and finite variance \(\sigma^{2}\). With
\(S_{0}=0\) and \(S_{n}=X_{1}\) ? \(\cdots+X_{n}\), set \(M=\max _{n \geq 0} S_{n} .\)
In view of \(\mu<0\), we know that \(M<\infty .\) Assumi \(E[M]<\infty\). (In fact,
it can be shown that this is a consequence of \(\sigma^{2}<\infty\).) Define
\(r(x)=x^{+}=\max \\{x, 0\\}\) and \(f(x)=E\left[(x+M-E[M])^{+}\right]\)
(a) Show \(f(x) \geq r(x)\) for all \(x\).
(b) Show \(f(x) \geq E[f(x+X)]\) for all \(x\), so that
\(\left\\{f\left(x+S_{n}\right)\right\\}\) is a nonnegative supermartingale
[Hint: Verify and use the fact that \(M\) and \((X+M)^{+}\)have the same
distribution.]
(c) Use (a) and (b) to show \(f(x) \geq
E\left[\left(x+S_{T}\right)^{+}\right]\)for all Markov times \(T
.\left[\left(x+S_{\infty}\right)^{+}=\lim _{n \rightarrow
\infty}\left(X+S_{n}\right)^{+}=0 .\right]\)