Chapter 6: Problem 17
Fix \(\lambda>0 .\) Suppose \(X_{1}, X_{2}, \ldots\) are jointly distributed random variables whose joint distributions satisfy $$ E\left[\exp \left\\{\lambda X_{n+1}\right\\} \mid X_{1}, \ldots, X_{n}\right] \leq 1, \quad \text { for all } n $$ Ix-t. \(S_{n}=X_{1}+\cdots+X_{n}\left(S_{0}=0\right)\). Establish $$ \operatorname{Pr}\left\\{\sup _{n \geq 0}\left(x+S_{n}\right)>l\right\\} \leq e^{-\lambda(t-x)}, \quad \text { for } x \leq l $$