Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the renewal function corresponding to the lifetime density $$ f(x)=\lambda^{2} x e^{-2 x}, \quad x \geq 0 $$ is $$ M(t)=\frac{1}{2} \lambda t-\frac{1}{4}\left(1-e^{-2 \lambda t}\right) $$

Short Answer

Expert verified
The renewal function M(t) corresponding to the given lifetime density function \(f(x) = \lambda^2 x e^{-2x}, \quad x \geq 0\) is: \[M(t) = \frac{1}{2}\lambda t - \frac{1}{4}\left(1 - e^{-2 \lambda t}\right)\]

Step by step solution

01

Define the given lifetime density function

The given lifetime density function is: \[f(x) = \lambda^2 x e^{-2x}, \quad x \geq 0\]
02

Calculate the renewal function M(t)

To calculate the renewal function, we need to integrate the lifetime density function from 0 to t, multiplied by x: \[M(t) = \int_0^t xf(x)dx = \int_0^t x\lambda^2xe^{-2x} dx\]
03

Perform integration by parts

To integrate this expression, we will use integration by parts, where: \[u = x , du = dx\] \[dv = \lambda^2xe^{-2x} dx, v = -\frac{1}{2}xe^{-2x}+\frac{1}{4}e^{-2x}\] Using the integration by parts formula, \(\int u dv = uv - \int v du\), we get: \[M(t) = \left[-\frac{1}{2}x^2e^{-2x}+\frac{1}{4}xe^{-2x}\right]_0^t + \int_0^t \left(-\frac{1}{2}xe^{-2x}+\frac{1}{4}e^{-2x}\right) dx\]
04

Evaluate the first expression and solve the integrals

Evaluate the first part of the expression at t and subtract at 0: \[-\frac{1}{2}t^2e^{-2t}+\frac{1}{4}te^{-2t} - \left(-\frac{1}{2}0^2e^{-2(0)}+\frac{1}{4}0e^{-2(0)}\right) = -\frac{1}{2}t^2e^{-2t}+\frac{1}{4}te^{-2t}\] Now compute the integral: \[\int_0^t \left(-\frac{1}{2}xe^{-2x}+\frac{1}{4}e^{-2x}\right) dx = -\frac{1}{4}\int_0^t xe^{-2x}dx + \frac{1}{4}\int_0^t e^{-2x} dx\] For the first integral, we perform integration by parts again: \[u=x , du = dx\] \[dv= -\frac{1}{4}e^{-2x} dx, v = \frac{1}{8}e^{-2x}\] Using the integration by parts formula: \[-\frac{1}{4}\int_0^t xe^{-2x}dx = \left[\frac{1}{8}xe^{-2x}\right]_0^t - \frac{1}{8}\int_0^t e^{-2x} dx\] Now, solve the integrals in the initial expression: \[-\frac{1}{4}\int_0^t xe^{-2x}dx = \frac{1}{8}te^{-2t} - \frac{1}{4} \left[\frac{1}{2}e^{-2x}\right]_0^t = \frac{1}{8}te^{-2t} - \frac{1}{4}\left(\frac{1}{2}e^{-2t}-\frac{1}{2}\right)\] Finally, \[\frac{1}{4}\int_0^t e^{-2x} dx = \left[\frac{1}{4}\frac{1}{-2}e^{-2x}\right]_0^t =\left[\frac{1}{8}e^{-2x}\right]_0^t = \frac{1}{8}\left(1-e^{-2t}\right)\]
05

Combine the expressions and simplify

Should combine the expressions we obtained in steps 4 and 5: \[M(t) = -\frac{1}{2}t^2e^{-2t}+\frac{1}{4}te^{-2t} + \frac{1}{8}te^{-2t} - \frac{1}{4}\left(\frac{1}{2}e^{-2t}-\frac{1}{2}\right) +\frac{1}{8}\left(1-e^{-2 \lambda t}\right) \] Now simplify the expression: \[M(t) = \frac{1}{2}\lambda t - \frac{1}{4}\left(1 - e^{-2 \lambda t}\right)\] Thus, we have derived the renewal function M(t) as: \[M(t) = \frac{1}{2}\lambda t - \frac{1}{4}\left(1 - e^{-2 \lambda t}\right)\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(X_{1}, X_{2}, \ldots\), be the interoccurrence times in a renewal process. Suppose \(\operatorname{Pr}\left\\{X_{k}=1\right\\}=p\) and \(\operatorname{Pr}\left\\{X_{k}=2\right\\}=q=1-p .\) Verify that $$ E\left[N_{n}\right]=\frac{n}{1+q}-\frac{q^{2}}{(1+q)^{2}}+\frac{q^{n+2}}{(1+q)^{2}}, \quad n=2,4, \ldots $$ where \(N_{n}\) is the mean number of renewals up to (discrete time) \(n\).

Determine the distribution of the total life \(\beta_{t}\) of the Poisson process.

Consider a renewal process with underlying distribution function \(F(x)\). Let \(\mathbb{W}\) be the time when the interval duration from the preceding renewal event first exceeds \(\xi>0\) (a fixed constant). Determine an integral equation satisfied by $$ V(t)=\operatorname{Pr}\\{W \leq t\\} $$ Calculate \(E[W] .\) (Assume an event occurs at time \(t=0 .\) )

For a renewal process with distribution \(F(x)\) compute $$ p(t)=\operatorname{Pr}\\{\text { number of renewals in }(0, t] \text { is odd }\\} $$ Obtain this explicitly for a Poisson process with parameter \(\lambda\) and also explicitly when \(F(t)=\int_{0}^{1} x e^{-x} d x\).

Consider a renewal process \(N(t)\) with associated distribution function \(F(x)\). Define \(m_{k}(t)=E\left[N(t)^{h}\right]\). Show that \(m_{k}(t)\) satisfies the renewal equation $$ m_{k}(t)=z_{k}(t)+\int_{0}^{t} m_{k}(t-\tau) d F(\tau), \quad k=1,2, \ldots $$ where $$ z_{k}(t)=\int_{0}^{t} \sum_{j=0}^{k-1}\left(\begin{array}{l} k \\ j \end{array}\right) m_{j}(t-\tau) d F(\tau) $$ Ilint: Use the renewal argument.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free