Chapter 5: Problem 30
Let \(X_{1}, X_{2}, \ldots\), be the interoccurrence times in a renewal process. Suppose \(\operatorname{Pr}\left\\{X_{k}=1\right\\}=p\) and \(\operatorname{Pr}\left\\{X_{k}=2\right\\}=q=1-p .\) Verify that $$ E\left[N_{n}\right]=\frac{n}{1+q}-\frac{q^{2}}{(1+q)^{2}}+\frac{q^{n+2}}{(1+q)^{2}}, \quad n=2,4, \ldots $$ where \(N_{n}\) is the mean number of renewals up to (discrete time) \(n\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.