Chapter 5: Problem 23
Consider a renewal process with interarrival distribution \(G_{0}(x) .\) Suppose each event is kept with probability \(q\) and deleted with probability \(1-q\), and then the time scale is expanded by a factor \(1 / q\) (see Problem 19). Show that the mean interarrival time is the same for the original and the new process. Repeat the above operation of deletion and scale expansion to obtain a sequence of renewal processes with interarrival distribution given by \(G_{(n)}(x)\) after \(n\) such transformations of the process. In all these operations \(q\) is held fixed. Show that if \(0