Chapter 5: Problem 16
Consider a renewal process \(N(t)\) with associated distribution function \(F(x)\). Define \(m_{k}(t)=E\left[N(t)^{h}\right]\). Show that \(m_{k}(t)\) satisfies the renewal equation $$ m_{k}(t)=z_{k}(t)+\int_{0}^{t} m_{k}(t-\tau) d F(\tau), \quad k=1,2, \ldots $$ where $$ z_{k}(t)=\int_{0}^{t} \sum_{j=0}^{k-1}\left(\begin{array}{l} k \\ j \end{array}\right) m_{j}(t-\tau) d F(\tau) $$ Ilint: Use the renewal argument.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.