Chapter 4: Problem 28
Show for the \(M / M / s\) system that the stationary queue size distribution
\(\left\\{p_{n}, n=0,1,2, \ldots\right\\}\) is given by
$$
\begin{aligned}
&p_{0}=\left\\{\frac{(s \rho)^{s}}{s !(1-\rho)}+\sum_{i=0}^{s-1} \frac{(s
\rho)^{t}}{i !}\right\\}^{-1} \\
&P_{n}= \begin{cases}P_{0} \frac{(s \rho)^{n}}{n !}, & 1 \leq n \leq s \\
p_{0} \rho^{n} \frac{s^{s}}{s !}, & s