Chapter 4: Problem 27
The following two birth and death processes (cf. Section 4, Chapter 4 ) can
lor viewed as models for queueing with balking.
(a) First consider a birth and death process with parameters
$$
\begin{array}{ll}
\lambda_{n}=\lambda q^{n}, \quad 00 \quad(n=0,1,2, \ldots) \\
\mu_{n}=\mu, & \mu>0 \\
\mu_{0}=0
\end{array}
$$
(b) Let the parameters be
$$
\begin{aligned}
&\lambda_{n}=\frac{\lambda}{n+1}, \quad \mu_{n}=\mu \quad(n=1,2, \ldots) \\
&\mu_{0}=0
\end{aligned}
$$
Determine the stationary distribution in each case.