Chapter 4: Problem 10
Let \(\mathscr{R}\) be a continuous time birth and death process where \(\lambda_{n}=\lambda>0\), \(n \geq 0, \mu_{0}=0, \mu_{n}>0, n \geq 1 .\) Let \(\pi=\sum_{n} \pi_{n}<\infty\), where \(\pi_{n}=\lambda^{n} /\left(\mu_{1} \mu_{2} \cdots \cdots \mu_{n}\right)\) so that \(\pi_{V} / \pi\) is the stationary distribution of the process. Suppose the initial state is a r.v. whose distribution is the stationary distribution of the process. Prove that the number of deaths in \([0, t]\) has a Poisson distribution with parameter \(\lambda t\).