Chapter 3: Problem 8
Let P be a \(3 \times 3\) Markov matrix and define \(\mu(\mathbf{P})=\max _{i_{1}, i_{2}, f}\left[P_{i_{1}, j}-P_{i_{2}, j}\right]\) Show that \(\mu(\mathbf{P})=1\) if and only if \(\mathbf{P}\) has the form $$ \left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & p & q \\ r & s & t \end{array}\right) \quad(p, q \geq 0, p+q=1 ; \quad r, s, t \geq 0, r+s+t=1) $$ or any matrix obtained from this one by interchanging rows and/or columns.