Chapter 3: Problem 6
Consider a Markov chain with the \(N+1\) states \(0,1, \ldots, N\) and transition I robabilities $$ \begin{aligned} &P_{i j}=\left(\begin{array}{l} N \\ j \end{array}\right) \pi \dot{i}\left(1-\pi_{i}\right)^{N-j}, \quad 0 \leq i, \quad j \leq N \\ &\pi_{i}=\frac{1-e^{-2 a l / N}}{1-e^{-2 a}}, \quad a>0 \end{aligned} $$ Note that 0 and \(N\) are absorbing states. Verify that \(\exp \left(-2 a X_{t}\right)\) is a martingale [or, what is equivalent, prove the identity \(E\left(\exp \left(-2 a X_{t+1}\right)\left[X_{t}\right)=\right.\) \(\left.\exp \left(-2 a X_{t}\right)\right]\), where \(X_{t}\) is the state at time \(t(t=0,1,2, \ldots)\). Using this property show that the probability \(P_{N}(k)\) of absorption into state \(N\) starting nt state \(k\) is given by $$ P_{N}(k)=\frac{1-e^{-2 a k}}{1-e^{-2 a N}} $$