Chapter 3: Problem 16
Fix the decreasing sequence of nonnegative numbers \(1=b_{0} \geq b_{1} \geq \cdots\) and consider the Markov chain having transition probabilities $$ \boldsymbol{P}_{i j}= \begin{cases}\frac{b_{j}}{b_{i}}\left(\beta_{i}-\beta_{i+1}\right) & j \leq i \\\ \frac{\beta_{i+1}}{\beta_{i}} & j=i+1 \\ 0 & \text { elsewhere, }\end{cases} $$ where \(\beta_{n}=b_{n} /\left(b_{1}+\cdots+b_{n}\right)\). Show that \(P_{00}^{n}=1 / \sigma_{n}\) where \(\sigma_{n}=b_{1}+\cdots+b_{n}\). Thus the chain is transient if and only if \(\sum \frac{1}{\sigma_{n}}<\infty\).