Chapter 3: Problem 14
Consider an irreducible Markov chain with a finite set of states \(\\{1,2, \ldots, N\\}\). Let \(\left\|P_{i j}\right\|\) be the transition probability matrix of the Markov chain and denote by \(\left\\{\pi_{j}\right\\}\) the stationary distribution of the process. Let \(\left\|P_{i j}^{(m)}\right\|\) denote the \(m\)-step transition probability matrix. Let \(\varphi(x)\) be a concave function on \(x \geq 0\) and define $$ E_{m}=\sum_{j=1}^{N} \pi_{j} \varphi\left(P_{j t}^{(m)}\right) \quad \text { with } l \text { fixed. } $$ Prove that \(E_{m}\) is a nondecreasing function of \(m\), i.e., \(E_{m+1} \geq E_{m}\) for all \(m \geq 1\)