Chapter 3: Problem 1
Let \(\\{X(t), t \geq 0\\}\) and \(\\{Y(t), t \geq 0\\}\) be two independent Poisson processes with parameters \(\lambda_{1}\) and \(\lambda_{2}\), respectively. Define $$ Z(t)=X(t)-Y(t), \quad t \geq 0 $$ This is a stochastic process whose state space consists of all the integers. (positive, negative, and zero). Let $$ P_{n}(t)=\operatorname{Pr}\\{Z(t)=n\\}, \quad n=0, \pm 1, \pm 2, \ldots $$ Establish the formula $$ \sum_{n=-\infty}^{\infty} P_{n}(t) z^{n}=\exp \left(-\left(\lambda_{1}+\lambda_{2}\right) t\right) \exp \left(\lambda_{1} z t+\left(\lambda_{2} / z\right) t\right), \quad|z| \neq 0 $$ Compute \(E(Z(t))\) and \(E\left(Z(t)^{2}\right)\)