Let \(N\) balls be thrown independently into \(n\) urns, each ball having
probaliility \(1 / n\) of falling into any particular urn. Iet \(Z_{N, n}\) be the
number of empty urus after culminating these tosses, and let \(P_{N,
n}(k)=\operatorname{Pr}\left(Z_{N, n}=k\right)\).
I).fine \(\varphi_{N, m}(t)=\sum_{k=0}^{n} P_{N, n}(k) e^{i k t}\)
(a) Show that
$$
P_{N+1, n}(k)=\left(1-\frac{k}{n}\right) P_{N, n}(k)+\frac{k+1}{n} P_{N,
n}(k+1), \text { for } k=0,1, \ldots, n
$$
(I) Show that
$$
V_{N, n}(k)=\left(1-\frac{1}{n}\right)^{N} P_{N,
n-1}(k-1)+\sum_{i=1}^{N}\left(\begin{array}{c}
N \\
i
\end{array}\right) \frac{1}{n^{i}}\left(1-\frac{1}{n}\right)^{N-i}
P_{N-i_{n-1}}(k)
$$
(v) I)efin: \(G_{n}(t, z)=\sum_{N=0}^{\infty} \varphi_{N, n}(t) \frac{n^{N}}{N
!} z^{N}\), Using part \((b)\), show that \(G_{n}(t, z)=\) Cin \(_{1}(t,
z)\left(e^{i t}+e^{2}-1\right)\), and conclude that
$$
G_{n}(t, z)=\left(e^{l t}+e^{z}-1\right)^{n}, \quad n=0,1,2, \ldots
$$