Chapter 1: Problem 7
Suppose we have \(N\) chips, numbered \(1,2, \ldots, N .\) We take a random sample of size \(n\) without replacement. Let \(X\) be the largest number in the random sample. Show that the probability function of \(X\) is $$ \operatorname{Pr}\\{X=k\\}=\frac{\left(\begin{array}{l} k-1 \\ n-1 \end{array}\right)}{\left(\begin{array}{c} N \\ n \end{array}\right)} \quad \text { for } k=n, n+1, \ldots, N $$ and that $$ E X=\frac{n}{n+1}(N+1), \quad \operatorname{Var}(X)=\frac{n(N-n)(N+1)}{(n+1)^{2}(n+2)} $$