Chapter 1: Problem 23
$$ \text { (a) Let } X \text { and } Y \text { be independent random variables such that } $$ $$ \begin{aligned} &\operatorname{Pr}\\{X=i\\}=f(i), \quad \operatorname{Pr}\\{Y=i\\}=g(i) \\ &f(i)>0, \quad g(i)>0, \quad i=0,1,2, \ldots \end{aligned} $$ and $$ \sum_{i=0}^{\infty} f(i)=\sum_{i=0}^{\infty} \mathrm{g}(i)=1 $$ Suppose $$ \operatorname{Pr}\\{X=k \mid X+Y=l\\}=\left\\{\begin{array}{cc} \left(\begin{array}{l} l \\ k \end{array}\right) p^{k}(1-p)^{1-k}, & 0 \leq k \leq l, \\ 0, & k>l . \end{array}\right. $$ Prove that $$ f(i)=e^{-\theta x} \frac{(\theta \alpha)^{i}}{i !}, \quad g(i)=\mathrm{e}^{-\theta} \frac{\theta^{i}}{i !}, \quad \alpha=0,1,2, \ldots $$ where \(\alpha=p /(1-p)\) and \(\theta>0\) is arbitrary. (b) Show that \(p\) is determined by the condition. $$ G\left(\frac{1}{1-p}\right)=\frac{1}{f(0)} $$ Ilint: Let \(F(s)=\sum f(i) s^{I}, G(s)=\sum g(i) s^{i} .\) Establish first the relation $$ F(u) F(v)=F(v p+(1-p) u) G(v p+(1-p) u) $$