Chapter 1: Problem 2
For each fixed \(\lambda>0\) let \(X\) have a Poisson distribution with parameter \(\lambda\). Suppose \(\lambda\) itself is a random variable following a gamma distribution (i.e., with density $$ f(\lambda)= \begin{cases}\frac{1}{\Gamma(n)} \lambda^{n-1} e^{-\lambda}, & \lambda \geq 0 \\ 0, & \lambda<0\end{cases} $$where \(n\) is a fixed positive constant). Show that now $$ \operatorname{Pr}\\{X=k\\}=\frac{\Gamma(k+n)}{\Gamma(n) \Gamma(k+1)}\left(\frac{1}{2}\right)^{k+n}, \quad k=0,1, \ldots $$ When \(n\) is an integer this is the negative binomial distribution with \(p=\frac{1}{2}\).