Chapter 1: Problem 12
Let \(A_{0}, A_{1}, \ldots, A_{r}\), be \(r+1\) events which can oceur as outcomes of an experiment. Let \(p_{l}\) be the probability of the occurrence of \(A_{l}(i=0,1,2, \ldots, r)\). Suppose we perform independent trials until the event \(A_{0}\) occurs \(k\) times. Let \(X_{i}\) be the number of occurrences of the event \(A_{i} .\) Show that \(\operatorname{Pr}\left\\{X_{1}=x_{1}, \ldots, X_{r}=x_{r} ; A_{0}\right.\) oceurs for the \(k\) th time at the \(\left(k+\sum_{i=1}^{r} x_{i}\right)\) th trial \(\\}\) $$ =\frac{\Gamma\left(k+\sum_{i=1}^{r} x_{i}\right)}{\Gamma(k) \prod_{i=1}^{r} x_{i} !} p_{0}^{k} \prod_{i=1}^{r} p_{i^{i}}^{x_{i}} $$