Chapter 1: Problem 11
Let \(X\) and \(Y\) be jointly distributed discrete random variables having possible values \(0,1,2, \ldots\) For \(|s|<1,|t|<1\) define the joint generating function $$ \phi_{X, y}(s, t)=\sum_{i, j=0}^{\infty} s^{i} t^{j} \operatorname{Pr}\\{X=i, Y=j\\} $$ and the marginal generating functions $$ \begin{aligned} &\phi_{X}(s)=\sum_{i=0}^{\infty} s^{i} \operatorname{Pr}\\{X=i\\} \\ &\phi_{Y}(t)=\sum_{j=0}^{\infty} t^{j} \operatorname{Pr}\\{Y=j\\} \end{aligned} $$ (a) Prove that \(X\) and \(Y\) are independent if and only if $$ \phi_{X, y}(s, t)=\phi_{X}(s) \phi_{Y}(t) \quad \text { for all } s, t $$ (b) Give an example of jointly distributed random variables \(X, Y\) which. are not independent, but for which. $$ \phi_{X, Y}(t, t)=\phi_{X}(t) \phi_{Y}(t) \text { for all } t $$ (This example is pertinent because \(\phi_{X, Y}(t, t)\) is the generating function of the sum \(X+Y\). Thus independence is sufficient but not necessary for the generating function of a sum of random variables to be the product of the marginal generating functions.)