Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

There are ktypes of coupons. Independently of the types of previously collected coupons, each new coupon collected is of typeiwith probability pi, i=1kpi=1. If n coupons are collected, find the expected number of distinct types that appear in this set. (That is, find the expected number of types of coupons that appear at least once in the set of ncoupons.)

Short Answer

Expert verified

E( Number of types)=k-i=1K1-pin

Step by step solution

01

Step 1:Given information

There are ktypes of coupons. Independently of the types of previously collected coupons, each new coupon collected is of typeiwith probability pi,i=1kpi=1

02

Step 2:Explanation

Given:

ktypes of coupon.

Coupons are independently selected

Coupon is of type iwith probability pi

i=1kpi=1

The number of successes among a fixed number of independent trials with a constant probability of success follows a binomial distribution.

Definition binomial probability:

P(X=k)=nk·pk·(1-p)n-k=n!k!(n-k)!·pk·(1-p)n-k

Let us evaluate the definition of binomial probability at n=n,p=piand k=0:

P(no coupons of type i)=P(X=0)=n0·pi0·1-pin-0

=1·1·1-pin

=1-pin

Use the Complement rule:

PAc=P(not A)=1-P(A)

P(At least one coupon of type i)=1-P(no coupons of typei)

=1-1-pin

03

Step 3:Expected value

The expected value (or mean) is the sum of the product of each possibility x(number of types of coupons) with its probability P(x).

E(Number of types )=xP(x)

=i=1k1×1-1-pin

=i=1k1-1-pin

=k-i=1k1-pin

04

Final answer

E(Number of types)=k-i=1k1-pin

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The National Basketball Association (NBA) draft lottery involves the 11 teams that had the worst won-lost records during the year. A total of 66 balls are placed in an urn. Each of these balls is inscribed with the name of a team: Eleven have the name of the team with the worst record, 10 have the name of the team with the second worst record, 9 have the name of the team with the third worst record, and so on (with 1 ball having the name of the team with the 11 th-worst record). A ball is then chosen at random, and the team whose name is on the ball is given the first pick in the draft of players about to enter the league. Another ball is then chosen, and if it "belongs" to a team different from the one that received the first draft pick, then the team to which it belongs receives the second draft pick. (If the ball belongs to the team receiving the first pick, then it is discarded and another one is chosen; this continues until the ball of another team is chosen.) Finally, another ball is chosen, and the team named on the ball (provided that it is different from the previous two teams) receives the third draft pick. The remaining draft picks 4 through 11 are then awarded to the 8 teams that did not "win the lottery," in inverse order of their won-lost not receive any of the 3 lottery picks, then that team would receive the fourth draft pick. Let X denote the draft pick of the team with the worst record. Find the probability mass function of X.

A fair coin is flipped 10times. Find the probability that there is a string of 4consecutive heads by

(a) using the formula derived in the text;

(b) using the recursive equations derived in the text.

(c) Compare your answer with that given by the Poisson approximation.

In some military courts, 9judges are appointed. However, both the prosecution and the defense attorneys are entitled to a peremptory challenge of any judge, in which case that judge is removed from the case and is not replaced. A defendant is declared guilty if the majority of judges cast votes of guilty, and he or she is declared innocent otherwise. Suppose that when the defendant is, in fact, guilty, each judge will (independently) vote guilty with probability .7,whereas when the defendant is, in fact, innocent, this probability drops to .3.

(a) What is the probability that a guilty defendant is declared guilty when there are (i) 9, (ii) 8, and (iii) 7judges?

(b) Repeat part (a) for an innocent defendant.

(c) If the prosecuting attorney does not exercise the right to a peremptory challenge of a judge, and if the defense is limited to at most two such challenges, how many challenges should the defense attorney make if he or she is 60percent certain that the client is guilty?

In the game of Two-Finger Morra, 2players show 1or 2fingers and simultaneously guess the number of fingers their opponent will show. If only one of the players guesses correctly, he wins an amount (in dollars) equal to the sum of the fingers shown by him and his opponent. If both players guess correctly or if neither guesses correctly, then no money is exchanged. Consider a specified player, and denote by X the amount of money he wins in a single game of Two-Finger Morra.

(a) If each player acts independently of the other, and if each player makes his choice of the number of fingers he will hold up and the number he will guess that his opponent will hold up in such a way that each of the 4possibilities is equally likely, what are the possible values of Xand what are their associated probabilities?

(b) Suppose that each player acts independently of the other. If each player decides to hold up the same number of fingers that he guesses his opponent will hold up, and if each player is equally likely to hold up 1or 2 fingers, what are the possible values ofX and their associated probabilities?

Show how the derivation of the binomial probabilities P{X=i}=nipi(1-p)n-i,i=0,,nleads to a proof of the binomial theorem (x+y)n=i=0nnixiyn-iwhen xand yare nonnegative.

Hint: Let p=xx+y.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free