Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let Xbe a random variable having expected value μand variance σ2. Find the expected value and variance ofY=X-μσ.

Short Answer

Expert verified

Mean is 0, and variance is 1.

Step by step solution

01

Given information

Let X be a random variable having expected value μ and variance σ2.

02

Calculation

Utilizing the linearity of expectation, we have that

EY-μσ=1σ(E(Y)-E(μ))=1σ(μ-μ)=0

And using the effects of the Variance (adding a constant accomplishes not change the variance and multiplying by a constant increase the variance by the square) we have that

VarY-μσ=1σ2Var(Y)=1σ2×σ2=1

03

Final answer

The expected value and variance are0,1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In response to an attack of 10missiles, 500 antiballistic missiles are launched. The missile targets of the antiballistic missiles are independent, and each antiballstic missile is equally likely to go towards any of the target missiles. If each antiballistic missile independently hits its target with probability .1, use the Poisson paradigm to approximate the probability that all missiles are hit.

Show that Xis a Poisson random variable with parameter λ, then

EXn=λE(X+1)n-1

Now use this result to compute EX3.

In the game of Two-Finger Morra, 2players show 1or 2fingers and simultaneously guess the number of fingers their opponent will show. If only one of the players guesses correctly, he wins an amount (in dollars) equal to the sum of the fingers shown by him and his opponent. If both players guess correctly or if neither guesses correctly, then no money is exchanged. Consider a specified player, and denote by X the amount of money he wins in a single game of Two-Finger Morra.

(a) If each player acts independently of the other, and if each player makes his choice of the number of fingers he will hold up and the number he will guess that his opponent will hold up in such a way that each of the 4possibilities is equally likely, what are the possible values of Xand what are their associated probabilities?

(b) Suppose that each player acts independently of the other. If each player decides to hold up the same number of fingers that he guesses his opponent will hold up, and if each player is equally likely to hold up 1or 2 fingers, what are the possible values ofX and their associated probabilities?

In Example 4b, suppose that the department store incurs an additional cost of cfor each unit of unmet demand. (This type of cost is often referred to as a goodwill cost because the store loses the goodwill of those customers whose demands it cannot meet.) Compute the expected profit when the store stocks s units, and determine the value of data-custom-editor="chemistry" s that maximizes the expected profit.

Four buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students who were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on her bus.

(a) Which of E[X] or E[Y] do you think is larger? Why?

(b) Compute E[X] and E[Y].

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free