Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two athletic teams play a series of games; the first team to win 4 games is declared the overall winner. Suppose that one of the teams is stronger than the other and wins each game with probability .6, independently of the outcomes of the other games. Find the probability, for i = 4, 5, 6, 7, that the stronger team wins the series in exactly i games. Compare the probability that the stronger team wins with the probability that it would win a 2-outof-3 series.

Short Answer

Expert verified

The probability that the stronger team will win in 2out of 3series is :210.62·0.4=0.288

Step by step solution

01

:Given Information

If i=4, the stronger team will win the series in exactly igames if and only if they win all four games. Hence, the Probability is 0.64=0.1296.

Suppose i{5,6,7}. Say that the lastithgame has won by the stronger team. Chose i-4places out of first i-1places and say that in these games has won weaker team. So, the probability that the stronger team has won the series in exactly igames isi-1i-40.64·0.4i-4.

02

Step 2:Explanation

i=5=0.207

i=6=0.207

i=7=0.1666

therefore the probability that the stronger team wins in 2out of 3series is ,210.62·0.4=0.288.

03

Final Answer

The final answer is210.62·0.4=0.288

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In some military courts, 9judges are appointed. However, both the prosecution and the defense attorneys are entitled to a peremptory challenge of any judge, in which case that judge is removed from the case and is not replaced. A defendant is declared guilty if the majority of judges cast votes of guilty, and he or she is declared innocent otherwise. Suppose that when the defendant is, in fact, guilty, each judge will (independently) vote guilty with probability .7,whereas when the defendant is, in fact, innocent, this probability drops to .3.

(a) What is the probability that a guilty defendant is declared guilty when there are (i) 9, (ii) 8, and (iii) 7judges?

(b) Repeat part (a) for an innocent defendant.

(c) If the prosecuting attorney does not exercise the right to a peremptory challenge of a judge, and if the defense is limited to at most two such challenges, how many challenges should the defense attorney make if he or she is 60percent certain that the client is guilty?

Consider a roulette wheel consisting of 38 numbers 1 through 36, 0, and double 0. If Smith always bets that the outcome will be one of the numbers 1 through 12, what is the probability that

  1. Smith will lose his first 5 bets;
  2. his first win will occur on his fourth bet?

Suppose that a die is rolled twice. What are the possible values that the following random variables can take on:

(a) the maximum value to appear in the two rolls;

(b) the minimum value to appear in the two rolls;

(c) the sum of the two rolls;

(d) the value of the first roll minus the value of the second roll?

Four buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students who were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on her bus.

(a) Which of E[X] or E[Y] do you think is larger? Why?

(b) Compute E[X] and E[Y].

Consider n independent sequential trials, each of which is successful with probability p. If there is a total of k successes, show that each of the n!/[k!(n − k)!] possible arrangements of the k successes and n − k failures is equally likely.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free