Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At time 0, a coin that comes up heads with probability p is flipped and falls to the ground. Suppose it lands on heads. At times chosen according to a Poisson process with rate λ, the coin is picked up and flipped. (Between these times, the coin remains on the ground.) What is the probability that the coin is on its head side at timet? Hint: What would be the conditional probability if there were no additional flips by time t, and what would it be if there were additional flips by time t?

Short Answer

Expert verified

The required probability ise-λt+p·1-e-λt

Step by step solution

01

Step 1:Given information

At time 0, a coin that comes up heads with probability p is flipped and falls to the ground. Suppose it lands on heads. At times chosen according to a Poisson process with rate λ, the coin is picked up and flipped. (Between these times, the coin remains on the ground.)

02

Step 2:Explanation

Since we select our times of flipping a coin according to the Poisson process with the rate λ, the number of times that we flip a coin before has distribution Pois (λt). Name that random variable Y. If Y=0, by the definition, the probability that we will finish with Head on is 1 since we do not flip a coin and we are told that we begin with Head. If Y1, the probability that we finish with Heads is simply psince it only depends on the final throw. Hence, the probability is

p=P(HeadY=0)P(Y=0)+P(Head Y1)P(Y1)

=e-λt+p·1-e-λt

03

Step 3:Final answer

The required probability ise-λt+p·1-e-λt

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The National Basketball Association championship series is a best of 7 series, meaning that the first team to win 4 games is declared the champion. In its history, no team has ever come back to win the championship series after being behind 3 games to 1. Assuming that each of the games played in this year’s series is equally likely to be won by either team, independent of the results of earlier games, what is the probability that the upcoming championship series will result in a team coming back from a 3 games to 1 deficit to win the series?

There are two possible causes for a breakdown of a machine. To check the first possibility would cost C1 dollars, and, if that were the cause of the breakdown, the trouble could be repaired at a cost of R1 dollars. Similarly, there are costs C2 and R2 associated with the second possibility. Let p and 1 − p denote, respectively, the probabilities that the breakdown is caused by the first and second possibilities. Under what conditions on p, Ci, Ri, i = 1, 2, should we check the first possible cause of breakdown and then the second, as opposed to reversing the checking order, so as to minimize the expected cost involved in returning the machine to working order?

A newsboy purchases papers at 10 cents and sells them at 15 cents. However, he is not allowed to return unsold papers. If his daily demand is a binomial random variable with n=10,p=13, approximately how many papers should he purchase so as to maximize his expected profit?

Suppose that it takes at least 9votes from a 12- member jury to convict a defendant. Suppose also that the probability that a juror votes a guilty person innocent is .2, whereas the probability that the juror votes an innocent person guilty is .1. If each juror acts independently and if 65 percent of the defendants are guilty, find the probability that the jury renders a correct decision. What percentage of defendants is convicted?

A man claims to have extrasensory perception. As a test, a fair coin is flipped 10times and the man is asked to predict the outcome in advance. He gets 7out of 10 correct. What is the probability that he would have done at least this well if he did not have ESP?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free