Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. What are the possible values of X?

Short Answer

Expert verified

Possible values of X can be described by:

{n-2tt{0,1,,n}}

Step by step solution

01

Step1:Given Information

X - It is the difference between the number of heads and the number of tails.

02

Step2:Explanation

Possible outcomes of X, when a coin is tossed n times are:

If the number of tails is t, then the number of heads(h) is n-t.

h=n-t

Therefore X can be written as:

X=h-t=n-t-t=n-2t

All possible outcomes of X can be described as below:

{n-2tt{0,1,,n}}

03

Step3: Final Result

Possible values of X are given below: {n-2tt{0,1,,n}}


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If X has distribution function F, what is the distribution function of the random variable αX + β, where α and β are constants, α0?

The probability of being dealt a full house in a hand of poker is approximately .0014. Find an approximation for the probability that in 1000 hands of poker, you will be dealt at least 2 full houses.

The number of times that a person contracts a cold in a given year is a Poisson random variable with parameter λ=5. Suppose that a new wonder drug (based on large quantities of vitamin C) has just been marketed that reduces the Poisson parameter to λ=3 for 75 percent of the population. For the other 25 percent of the population, the drug has no appreciable effect on colds. If an individual tries the drug for a year and has 2 colds in that time, how likely is it that the drug is beneficial for him or her?

A man claims to have extrasensory perception. As a test, a fair coin is flipped 10times and the man is asked to predict the outcome in advance. He gets 7out of 10 correct. What is the probability that he would have done at least this well if he did not have ESP?

Suppose that the number of events that occur in a specified time is a Poisson random variable with parameter λ. If each event is counted with probability p, independently of every other event, show that the number of events that are counted is a Poisson random variable with parameter λp. Also, give an intuitive argument as to why this should be so. As an application of the preceding result, suppose that the number of distinct uranium deposits in a given area is a Poisson random variable with parameter λ=10. If, in a fixed period of time, each deposit is discovered independently with probability 150, find the probability that

(a) exactly ,

(b) at least 1, and

(c) at most 1deposit is discovered during that time.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free