Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

It is known that diskettes produced by a certain company will be defective with probability .01, independently of one another. The company sells the diskettes in packages of size 10and offers a money-back guarantee that at most1of the diskettes in the package will be defective. The guarantee is that the customer can return the entire package of 10 diskettes if he or she finds more than 1 defective diskette in it. If someone buys 3 packages, what is the probability that he or she will return exactly 1 of them?

Short Answer

Expert verified

The probability that someone returns1 package of 3bought is0.01278.

Step by step solution

01

Step 1:Given information

It is known that diskettes produced by a certain company will be defective with probability .01, independently of one another. The company sells the diskettes in packages of size 10 and offers a money-back guarantee that at most 1of the 10 diskettes in the package will be defective. The guarantee is that the customer can return the entire package of diskettes if he or she finds more than 1defective diskette in it

02

Explanation

Diskettes created by a certain company will be defective with a probability 0.01(independently of one another). Packages selling includes 10diskettes. The company suggests a money-back guarantee that at most1out of 10diskettes is defective. If someone purchases 3packages, we want to estimate the probability that he will return precisely 1package. First, let us calculate the probability that 1package is returned. We have:

(X2)=1-(X1)

=1-k=0110k·0.01k·0.9910-k

=1-0.9910-10·0.01·0.999

=0.0043

03

Step 3:Explanation

It remains to calculate the probability that exactly one package is returned. Let Abe event that package is returned, obviously (A)=0.0043. Thus it follows:

(B)=31·(A)·(1-(A))2

=3·0.0043·(1-0.0043)2

=0.01278

Therefore the probability of this event is 0.01278.

04

Step 4:Final information

The probability that someone returns1package of 3bought is 0.01278.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Four buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students who were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on her bus.

(a) Which of E[X] or E[Y] do you think is larger? Why?

(b) Compute E[X] and E[Y].

A student is getting ready to take an important oral examination and is concerned about the possibility of having an “on” day or an “off” day. He figures that if he has an on the day, then each of his examiners will pass him, independently of one another, with probability8, whereas if he has an off day, this probability will be reduced to4. Suppose that the student will pass the examination if a majority of the examiners pass him. If the student believes that he is twice as likely to have an off day as he is to have an on the day, should he request an examination with3examiners or with5examiners?

Consider a random collection of nindividuals. In approximating the probability that no 3of these individuals share the same birthday, a better Poisson approximation than that obtained in the text (at least for values of nbetween 80and 90) is obtained by letting Eibe the event that there are at least 3 birthdays on dayi,i=1,...,365.

(a) Find PEi.

(b) Give an approximation for the probability that no3individuals share the same birthday.

(c) Evaluate the preceding when n=88(which can be shown to be the smallest value ofnfor which the probability exceeds.5).

Let Xbe such thatP{X=1}=p=1-P{X=-1}

Find c1such that EcX=1.

In Example 4b, suppose that the department store incurs an additional cost of cfor each unit of unmet demand. (This type of cost is often referred to as a goodwill cost because the store loses the goodwill of those customers whose demands it cannot meet.) Compute the expected profit when the store stocks s units, and determine the value of data-custom-editor="chemistry" s that maximizes the expected profit.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free