Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Balls are randomly withdrawn, one at a time without replacement, from an urn that initially has N white and M black balls. Find the probability that n white balls are drawn before m black balls,nN,mM

Short Answer

Expert verified

In the given information the required probability isP(Xn)=k=nn+m-1NkMn+m-1-kN+Mn+m-1

Step by step solution

01

Given information

Consider this idea. There will be drawn nwhite balls before mblack balls if and only if there are at least nwhite balls within n+m-1drawn balls. This is because the fact that in that case, there is mor less black balls within n+m-1drawn balls, so we have satisfied our condition. If we mark with X the number of white balls drawn withinn+m-1drawn balls, we have that X has Hypergeometric distribution.

02

Step 2:Calculation

P(Xn)=k=nn+m-1P(X=n)

= k=nn+m-1NkMn+m-1-kN+Mn+m-1

03

Final answer

The required probability isPXn=k=nn+m-1NkMn+m-1-kN+Mn+m-1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In response to an attack of 10missiles, 500 antiballistic missiles are launched. The missile targets of the antiballistic missiles are independent, and each antiballstic missile is equally likely to go towards any of the target missiles. If each antiballistic missile independently hits its target with probability .1, use the Poisson paradigm to approximate the probability that all missiles are hit.

Five men and 5 women are ranked according to their scores on an examination. Assume that no two scores are alike and all 10! possible rankings are equally likely. LetXdenote the highest ranking achieved by a woman. (For instance,X=1 if the top-ranked person is female.) FindP{X=i},i=1,2,3,,8,9,10

In the game of Two-Finger Morra, 2players show 1or 2fingers and simultaneously guess the number of fingers their opponent will show. If only one of the players guesses correctly, he wins an amount (in dollars) equal to the sum of the fingers shown by him and his opponent. If both players guess correctly or if neither guesses correctly, then no money is exchanged. Consider a specified player, and denote by X the amount of money he wins in a single game of Two-Finger Morra.

(a) If each player acts independently of the other, and if each player makes his choice of the number of fingers he will hold up and the number he will guess that his opponent will hold up in such a way that each of the 4possibilities is equally likely, what are the possible values of Xand what are their associated probabilities?

(b) Suppose that each player acts independently of the other. If each player decides to hold up the same number of fingers that he guesses his opponent will hold up, and if each player is equally likely to hold up 1or 2 fingers, what are the possible values ofX and their associated probabilities?

From a set of nrandomly chosen people, let Eijdenote the event that persons iand jhave the same birthday. Assume that each person is equally likely to have any of the 365 days of the year as his or her birthday. Find

(a) PE3,4E1,2;

(b) PE1,3E1,2;

(c) PE2,3E1,2E1,3.

What can you conclude from your answers to parts (a)-(c) about the independence of the n2events Eij?

A man claims to have extrasensory perception. As a test, a fair coin is flipped 10times and the man is asked to predict the outcome in advance. He gets 7out of 10 correct. What is the probability that he would have done at least this well if he did not have ESP?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free