Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let Xbe a negative binomial random variable with parameters rand p, and let Ybe a binomial random variable with parameters nand p. Show that

P{X>n}=P{Y<r}

Hint: Either one could attempt an analytical proof of the preceding equation, which is equivalent to proving the identity

i=n+1i1r1pr(1p)ir=i=0r1ni×pi(1p)ni

or one could attempt a proof that uses the probabilistic interpretation of these random variables. That is, in the latter case, start by considering a sequence of independent trials having a common probability p of success. Then try to express the events to express the events {X>n}and {Y<r}in terms of the outcomes of this sequence.

Short Answer

Expert verified

We have proved that

P(X>n)=P(Y<r)

Step by step solution

01

Given information

We are going to prove that events X>n and Y<r are equivalent. As a consequence, these events will have the same probabilistic measure.

02

Explanation

If X>n, that means that we needed more than nattempts to reach rsuccesses that happens with probability p. That implies that in nattempts we made strictly less that rsuccesses, which is exactly Y<r.

On the other hand, if Y<r, that means that in nattempts we made strictly less that rsuccesses. So, in order to reach rsuccesses, we have to go on with our trials. Hence, the total number of trials until we reach rsuccesses will be strictly greater that n. That is exactly X>n.

03

Final answer

So, we have proved that {X>n}={Y<r}which implies

P(X>n)=P(Y<r)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

People enter a gambling casino at a rate of1every 2minutes.

(a)What is the probability that no one enters between 12:00and 12:05?

(b)What is the probability that at least4people enter the casino during that time?

A total of 2npeople, consisting of nmarried couples, are randomly divided into npairs. Arbitrarily number the women, and let Widenote the event that woman iis paired with her husband.

  1. FindP(Wi).
  2. For ij,find role="math" localid="1646662043709" PWiWj.
  3. When nis large, approximate the probability that no wife is paired with her husband.
  4. If each pairing must consist of a man and a woman, what does the problem reduce to?

There are two possible causes for a breakdown of a machine. To check the first possibility would cost C1 dollars, and, if that were the cause of the breakdown, the trouble could be repaired at a cost of R1 dollars. Similarly, there are costs C2 and R2 associated with the second possibility. Let p and 1 − p denote, respectively, the probabilities that the breakdown is caused by the first and second possibilities. Under what conditions on p, Ci, Ri, i = 1, 2, should we check the first possible cause of breakdown and then the second, as opposed to reversing the checking order, so as to minimize the expected cost involved in returning the machine to working order?

Suppose that the distribution function of X given by

F(b)=0    b<0b4    0b<112+b14    1b<21112    2b<31    3b

(a) Find P{X=i},i=1,2,3.

(b) Find P12<X<32.

From a set of n elements, a nonempty subset is chosen at random in the sense that all of the nonempty subsets are equally likely to be selected. Let X denote the number of elements in the chosen subset. Using the identities given in Theoretical Exercise 12of Chapter1, show that

E[X]=n212n1

Var(X)=n22n2n(n+1)2n22n12

Show also that for n large,

Var(X)~n4

in the sense that the ratio Var(X) ton/4approaches 1as n approaches q. Compare this formula with the limiting form of Var(Y) when P{Y =i}=1/n,i=1,...,n.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free