Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the distribution function of Xis given by

F(b)=0    b<012    0b<135    1b<245    2b<3910    3b<3.51    b3.5

calculate the probability mass function of X.

Short Answer

Expert verified

p(x)=12    x=0110    x=115    x=2110    x=3110    x=3.5

Step by step solution

01

Given information

F(b)=0    b<012    0b<135    1b<245    2b<3910    3b<3.51    b3.5

02

Explanation

The probability mass procedure is equivalent to zero for every particular where the distribution function is locally equivalent to some consistent. Therefore, we only have to think of facts in which function Fhas a brake.

Here,

P(0)=F(0)-P(b<0)

=12

P(1)=35-12

=110

P(2)=45-35

=15

P(3)=910-45

=110

P(3.5)=1-910

=110

03

Final answer

Probability mass function is

p(x)=12    x=0110    x=115    x=2110    x=3110    x=3.5

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A coin that when flipped comes up heads with probability p is flipped until either heads or tails has occurred twice. Find the expected number of flips

A newsboy purchases papers at 10 cents and sells them at 15 cents. However, he is not allowed to return unsold papers. If his daily demand is a binomial random variable with n=10,p=13, approximately how many papers should he purchase so as to maximize his expected profit?

Each of 500 soldiers in an army company independently has a certain disease with probability 1/103. This disease will show up in a blood test, and to facilitate matters, blood samples from all 500 soldiers are pooled and tested.

(a) What is the (approximate) probability that the blood test will be positive (that is, at least one person has the disease)? Suppose now that the blood test yields a positive result.

(b) What is the probability, under this circumstance, that more than one person has the disease? Now, suppose one of the 500 people is Jones, who knows that he has the disease.

(c) What does Jones think is the probability that more than one person has the disease? Because the pooled test was positive, the authorities have decided to test each individual separately. The first i − 1 of these tests were negative, and the ith one—which was on Jones—was positive.

(d) Given the preceding scenario, what is the probability, as a function of i, that any of the remaining people have the disease?

The random variable X is said to have the Yule-Simons distribution if

P{X=n}=4n(n+1)(n+2),n1

(a) Show that the preceding is actually a probability mass function. That is, show thatn=1P{X=n}=1

(b) Show that E[X] = 2.

(c) Show that E[X2] = q

Suppose that a biased coin that lands on heads with probability pis flipped 10times. Given that a total of 6heads results, find the conditional probability that the first 3outcomes are

(a) h,t,t(meaning that the first flip results in heads, the second is tails, and the third in tails);

(b)t,h,t.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free