Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The number of winter storms in a good year is a Poisson random variable with a mean of 3, whereas the number in a bad year is a Poisson random variable with a mean of5. If next year will be a good year with probability .4or a bad year with probability .6, find the expected value and variance of the number of storms that will occur.

Short Answer

Expert verified

Expected value, E[X]=4.2and variance,Var(X)=5.16.

Step by step solution

01

Step 1:Concept Introduction

Given Xthe number of storms that will occur next year.

Y=1    next year is a good year2    next year is a bad year

02

Step 2:Explanation

E[X]=E(XY=1)P(Y=1)+E(XY=2)P(Y=2)

=30.4+50.6

=1.2+3

=4.2

Var(X)=EX2(E[X])2

Now,

EX2=EX2Y=1P(Y=1)+EX2Y=2P(Y=2)

=(3+9)0.4+(5+25)0.6

=120.4+300.6

=4.8+18

=22.18

Var(X)=22.84.22

=22.817.64

=5.16
03

Step 3:Final Answer

TheE[X]=4.2is the expected value andVar(X)=5.16is the variance.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A set of 1000 cards numbered 1 through 1000 is randomly distributed among 1000 people with each receiving one card. Compute the expected number of cards that are given to people whose age matches the number on the card.

Repeat Problem 7.68 when the proportion of the population having a value of λless than xis equal to 1-e-x.

The number of accidents that a person has in a given year is a Poisson random variable with meanλ. However, suppose that the value ofλchanges from person to person, being equal to 2for 60percent of the population and 3for the other40percent. If a person is chosen at random, what is the probability that he will have

a. We are required to find P(N=0).

b. We are required to find P(N=3).

c. Define Mas the number of accidents in a preceding year. As likely as Nwe are require to find.

Between two distinct methods for manufacturing certain goods, the quality of goods produced by method iis a continuous random variable having distribution Fi,i=1,2. Suppose that goods are produced by method 1 and mby method 2 . Rank the n+mgoods according to quality, and let

Xj=1    if thejth best was produced from    method12    otherwise

For the vector X1,X2,,Xn+m, which consists of n1'sand m2's, let Rdenote the number of runs of 1 . For instance, if n=5,m=2, and X=1,2,1,1,1,1,2, then R=2. If F1=F2(that is, if the two methods produce identically distributed goods), what are the mean and variance of R?

In the text, we noted that

Ei=1Xi=i=1EXi

when the Xiare all nonnegative random variables. Since

an integral is a limit of sums, one might expect that E0X(t)dt=0E[X(t)]dt

whenever X(t),0t<,are all nonnegative random

variables; this result is indeed true. Use it to give another proof of the result that for a nonnegative random variable X,

E[X)=0P(X>t}dt

Hint: Define, for each nonnegative t, the random variable

X(t)by

role="math" localid="1647348183162" X(t)=1ift<X\\0iftX

Now relate4q

0X(t)dttoX

In Problem 7.6, calculate the variance of the sum of the rolls.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free