Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A deck of n cards numbered 1 through n, initially in any arbitrary order, is shuffled in the following manner: At each stage, we randomly choose one of the cards and move it to the front of the deck, leaving the relative positions of the other cards unchanged. This procedure is continued until all but one of the cards has been chosen. At this point, it follows by symmetry that all n! possible orderings are equally likely. Find the expected number of stages that are required.

Short Answer

Expert verified

The expected value will beE[X]=1+nn1++n2.

Step by step solution

01

Given information

A deck of n cards numbered 1 through n, initially in any arbitrary order, is shuffled in the following manner: At each stage, we randomly choose one of the cards and move it to the front of the deck, leaving the relative positions of the other cards unchanged.

02

Solution

Let Xi be the digit of cards that must be picked before one collects a distinct type after collecting i distinct types of cards.

So,

X=X0+X1++XN2

E[X]=EX0+EX1++EXN2

If one collects i distinct types of coupons,

The probability of obtaining a new distinct card after k pick will be,

PXi=k=ninink1,k1

03

Solution

Xi=geometric random variable

So the expectation value will be,

EXi=nni

The expectation value of X is given by.

E[X]=EX0+EX1++EXN2

=nn0+nn1++nnn+2

=1+nn1++n2

04

Final answer

The expected value isE[X]=1+nn1++n2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An urn has m black balls. At each stage, a black ball is removed and a new ball that is black with probability p and white with probability 1p is put in its place. Find the expected number of stages needed until there are no more black balls in the urn. note: The preceding has possible applications to understanding the AIDS disease. Part of the body’s immune system consists of a certain class of cells known as T-cells. There are2 types of T-cells, called CD4 and CD8. Now, while the total number of T-cells in AIDS sufferers is (at least in the early stages of the disease) the same as that in healthy individuals, it has recently been discovered that the mix of CD4 and CD8 T-cells is different. Roughly 60 percent of the T-cells of a healthy person are of the CD4 type, whereas the percentage of the T-cells that are of CD4 type appears to decrease continually in AIDS sufferers. A recent model proposes that the HIV virus (the virus that causes AIDS) attacks CD4 cells and that the body’s mechanism for replacing killed T-cells does not differentiate between whether the killed T-cell was CD4 or CD8. Instead, it just produces a new T-cell that is CD4 with probability .6 and CD8 with probability .4. However, although this would seem to be a very efficient way of replacing killed T-cells when each one killed is equally likely to be any of the body’s T-cells (and thus has probability .6 of being CD4), it has dangerous consequences when facing a virus that targets only the CD4 T-cells

A coin having probability p of landing on heads is flipped n times. Compute the expected number of runs of heads of size 1 , of size 2 , and of size k,1kn.

Cards from an ordinary deck are turned face up one at a time. Compute the expected number of cards that need to be turned face up in order to obtain

(a) 2 aces;

(b) 5 spades;

(c) all 13 hearts.

There are n items in a box labeled H and m in a box labeled T. A coin that comes up heads with probability p and tails with probability 1 − p is flipped. Each time it comes up heads, an item is removed from the H box, and each time it comes up tails, an item is removed from the T box. (If a box is empty and its outcome occurs, then no items are removed.) Find the expected number of coin flips needed for both boxes to become empty. Hint: Condition on the number of heads in the first n + m flips.

Suppose that A and B each randomly and independently choose3of10objects. Find the expected number of objects

a. Chosen by both A and B;

b. Not chosen by either A or B;

c. Chosen by exactly one of A and B.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free