Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that Xand Yare identically distributed and not necessarily independent, thenCov(X+Y,X-Y)=0.

Short Answer

Expert verified

It has been show thatCov(X+Y,X-Y)=0

Step by step solution

01

Given Information

Identically distributed and not necessarily independent variable=X,Y

ShowCov(X+Y,X-Y)=0

02

Explanation

We know that,

Cov(X+Y,XY)=Cov(X,X)+Cov(X,Y)+Cov(Y,X)+Cov(Y,Y)

=Var(X)Cov(X,Y)+Cov(X,Y)Var(Y)

=Var(X)Var(Y)

Now As Xand Yare identically Distributed

Var(X)=Var(Y)=σ2

And Cov(X,Y)=Cov(Y,X)=0

03

Final Answer

It has been shown thatCov(X+Y,X-Y)=0

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a gambler who, at each gamble, either wins or loses her bet with respective probabilities pand 1-p. A popular gambling system known as the Kelley strategy is to always bet the fraction 2p-1of your current fortune when p>12. Compute the expected fortune afterngambles of a gambler who starts with xunits and employs the Kelley strategy.

If 10 married couples are randomly seated at a round table, compute

(a) The expected number and

(b) The variance of the number of wives who are seated next to their husbands.

The game of Clue involves 6 suspects, 6 weapons, and 9 rooms. One of each is randomly chosen and the object of the game is to guess the chosen three.

(a) How many solutions are possible? In one version of the game, the selection is made and then each of the players is randomly given three of the remaining cards. Let S, W, and R be, respectively, the numbers of suspects, weapons, and rooms in the set of three cards given to a specified player. Also, let X denote the number of solutions that are possible after that player observes his or her three cards.

(b) Express X in terms of S, W, and R.

(c) Find E[X]

Repeat Problem 7.68 when the proportion of the population having a value of λless than xis equal to 1-e-x.

The number of accidents that a person has in a given year is a Poisson random variable with meanλ. However, suppose that the value ofλchanges from person to person, being equal to 2for 60percent of the population and 3for the other40percent. If a person is chosen at random, what is the probability that he will have

a. We are required to find P(N=0).

b. We are required to find P(N=3).

c. Define Mas the number of accidents in a preceding year. As likely as Nwe are require to find.

Gambles are independent, and each one results in the player being equally likely to win or lose 1 unit. Let W denote the net winnings of a gambler whose strategy is to stop gambling immediately after his first win. Find

(a) P{W > 0}

(b) P{W < 0}

(c) E[W]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free