Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Cards from an ordinary deck of 52playing cards are turned face upon at a time. If the 1st card is an ace, or the 2nd a deuce, or the 3rd a three, or ...,or the 13th a king,or the 14an ace, and so on, we say that a match occurs. Note that we do not require that the (13n + 1) card be any particular ace for a match to occur but only that it be an ace. Compute the expected number of matches that occur.

Short Answer

Expert verified

The expected number of matches that occur is 4

E(N)=4

Step by step solution

01

Given Information

Let Xi be the event that when we turn over card i if matches the required cards face.

For example, X1is the event that turning over card one reveals an ace.

X2is the event that turning over the second card reveals a deuce etc.

02

Explanation 

The number of matched cards N is given by the sum of these indicator random variables as,

N=i=152Xi

P(Xi)=452, probability that a certain selection is a match is,

P(Xi)=452=113

E(N)=i=152E(Xi)

=i=152P(Xi)

=52.113

=4

03

Final Answer

The expected number of matches that occur is 4.

E(N)=4

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In an urn containing n balls, the ith ball has weight W(i),i = 1,...,n. The balls are removed without replacement, one at a time, according to the following rule: At each selection, the probability that a given ball in the urn is chosen is equal to its weight divided by the sum of the weights remaining in the urn. For instance, if at some time i1,...,ir is the set of balls remaining in the urn, then the next selection will be ij with probability W(ij)/k=1rW(ik), j = 1,...,r Compute the expected number of balls that are withdrawn before the ball number 1is removed.

A fair die is successively rolled. Let X and Y denote, respectively, the number of rolls necessary to obtain a 6 and a 5. Find

(a) E[X];

(b) E[XY=1];

(c) E[XY=5];

The joint density of X and Yis given by f(x,y)=e-x/ye-yy,0<x<,0<y<, Compute EX2Y=y.

Let X1,X2,,Xnbe independent random variables having an unknown continuous distribution function Fand let Y1,Y2,,Ymbe independent random variables having an unknown continuous distribution function G. Now order those n+mvariables, and let

Ii=1    if theith smallest of then+m    variables is from theXsample0    otherwise

The random variable R=i=1n+miIiis the sum of the ranks of the Xsample and is the basis of a standard statistical procedure (called the Wilcoxon sum-of-ranks test) for testing whether Fand Gare identical distributions. This test accepts the hypothesis that F=Gwhen Ris neither too large nor too small. Assuming that the hypothesis of equality is in fact correct, compute the mean and variance of R.

Hint: Use the results of Example 3e.

The k-of-r-out-of- ncircular reliability system, krn, consists of ncomponents that are arranged in a circular fashion. Each component is either functional or failed, and the system functions if there is no block of rconsecutive components of which at least kare failed. Show that there is no way to arrange 47components, 8of which are failed, to make a functional 3-of-12-out-of-47circular system.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free