Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The k-of-r-out-of- ncircular reliability system, krn, consists of ncomponents that are arranged in a circular fashion. Each component is either functional or failed, and the system functions if there is no block of rconsecutive components of which at least kare failed. Show that there is no way to arrange 47components, 8of which are failed, to make a functional 3-of-12-out-of-47circular system.

Short Answer

Expert verified

It is impossible to arrange these components to obtain a functional 3-of-12-out-of-47 circular system.

Step by step solution

01

Given Information

The k-of-r-out-of-ncircular reliability system, localid="1647321919939" krnconsists of ncomponents that are arranged in a circular fashion.

02

Explanation

Define random variables Nithat marks the number of failed components in ith block of 12components. Observe that Nihas Hypergeometric distribution, i.e.

PNi=k=12k358-k478

So we have that

ENi=8·12472.0425

03

Final Answer

Now, let's prove that there exists a block that does not work, i.e., that has three or more failed components. If that would not be the case, we would have that all blocks have two or fewer failed components. But, that would be in contradiction with a fact that the expected number of failed components is 2.0425. So, it is impossible to arrange these components to obtain a functional 3-of-12-out-of-47circular system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Successive weekly sales, in units of 1,000, have a bivariate normal distribution with common mean 40, common standard deviation 6, and correlation .6.

(a) Find the probability that the total of the next 2 weeks’ sales exceeds 90.

(b) If the correlation were .2rather than .6, do you think that this would increase or decrease the answer to (a)? Explain your reasoning.

(c) Repeat (a) when the correlation is 2.

If X1,X2,X3, and X4are (pairwise) uncorrelated random variables, each having mean 0 and variance 1 , compute the correlations of

(a) X1+X2andX2+X3

(b) X1+X2and X3+X4.

Consider the following dice game: A pair of dice is rolled. If the sum is7,then the game ends and you win 0.If the sum is not 7,then you have the option of either stopping the game and receiving an amount equal to that sum or starting over again. For each value ofi,i=2,...,12, find your expected return if you employ the strategy of stopping the first time that a value at least as large as i appears. What value ofileads to the largest expected return? Hint: Let Xidenote the return when you use the critical value i.To computeE[Xi], condition on the initial sum.

Consider nindependent trials, the ithof which results in a success with probability Pl.

(a) Compute the expected number of successes in the ntrials-call it μ

(b) For a fixed value of μ, what choice of P1,,Pnmaximizes the variance of the number of successes?

(c) What choice minimizes the variance?

A coin having probability p of coming up heads is continually flipped until both heads and tails have appeared. Find

(a) the expected number of flips,

(b) the probability that the last flip lands on heads.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free