Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let X1, ... , Xn be independent uniform (0, 1) random variables. Let R = X(n) − X(1) denote the range and M = [X(n) + X(1)]/2 the midrange of X1, ..., Xn. Compute the joint density function of R and M.

Short Answer

Expert verified

f(R,M)=1;0(r,m)10;otherwise

Step by step solution

01

Introduction

Let X1,,Xn be independent uniform random variables.
The range of the uniform distribution is defined as R=X(n)-X(1)

The Midrange of the uniform distribution is defined as

M=X(n)+X(1)2

02

Explanation

Compute the joint density function of R and M
The probability density function of the Uniform distribution is given by,

fixi=1;0xi10;OtherwiseSinceallthevariablesareindependenttoeachother,thejointdistributionisgivenby,fx1xn=fx1fxn=1ConsiderR=X(n)-X(1)M=X(n)+X(1)2

03

Explanation

Let use say x, y are the minimum and maximum values in a sample which is taken from the given distribution. That is X(n)=yand X(1)=x
By using the transformation,

r=y-xx=y-rm=y+x2y=2m-xy=2m-(y-r)2y=2m+ry=m+r2And,x&=y-r=m+r2-r=m-r2Thus,x=m-r2y=m+r2

04

Explanation

Use Jacobian transformation to find the Jacobian coefficient. That is,

J=xrxmyrym=rm-r2mm-r2rm+r2mm+r2=-121121=-12(1)-12(1)=-1

05

Explanation 

Now,thejointdistributionofRandMisgivenby,f(R,M)=f(x1,xn)×1|J|=1×1|-1|=1Therefore,thejointdensityfunctionofRandMis,f(R,M)=1;0(r,m)10;otherwise

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that f(x, y) = 1/x, 0 < y < x < 1, is a joint density function. Assuming that f is the joint density function of X, Y, find

(a) the marginal density of Y;

(b) the marginal density of X;

(c) E[X]; (d) E[Y].

Let X1,...,Xn be independent and identically distributed random variables having distribution function F and density f. The quantity MK[X(1)+X(n)]/2, defined to be the average of the smallest and largest values in X1,...,Xn, is called the midrange of the sequence. Show that its distribution function is FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">

FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=n-m[F(2mx)F(x)]n1f(x)dx.


The time that it takes to service a car is an exponential random variable with rate 1.

(a) If A. J. brings his car in at time0and M. J. brings her car in at time t, what is the probability that M. J.’s car is ready before A. J.’s car? (Assume that service times are independent and service begins upon arrival of the car.)

(b) If both cars are brought in at time 0, with work starting on M. J.’s car only when A. J.’s car has been completely serviced, what is the probability that M. J.’s car is ready before time 2?

Suppose that W, the amount of moisture in the air on a given day, is a gamma random variable with parameters (t, β). That is, its density is f(w) = βe−βw(βw)t−1/(t), w > 0. Suppose also that given that W = w, the number of accidents during that day—call it N—has a Poisson distribution with mean w. Show that the conditional distribution of W given that N = n is the gamma distribution with parameters (t + n, β + 1)

The monthly worldwide average number of airplane crashes of commercial airlines is 2.2. What is the probability that there will be (a) more than 2such accidents in the next month? (b) more than 4such accidents in the next 2months? (c) more than 5such accidents in the next 3months? Explain your reasoning!

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free