Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let X1,...,Xn be independent and identically distributed random variables having distribution function F and density f. The quantity MK[X(1)+X(n)]/2, defined to be the average of the smallest and largest values in X1,...,Xn, is called the midrange of the sequence. Show that its distribution function is FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">

FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=n-m[F(2mx)F(x)]n1f(x)dx.


Short Answer

Expert verified

(a)P(Y=0)=0.82

(b)role="math" localid="1647327027064" Probability:P(Y2)=0.016

Step by step solution

01

Introduction

Let X1,...,Xnbe independent and identically distributed random variables having distribution functionFand density f.

02

Explanation

Theexpectednumberoftypographicalerroris0.2suchthatnp=0.2Thenumberofletterisassumedtobevery,veryhigh.SincethedistributionofnumberoferrorsisBinomial,Withparametersnandp.WehaveTheexpectednumber,np=0.2Butnisunknown.Thus,pcannotbedetermined.ThenPoissonapproximationcanbeused.Withparameterλ=np=0.2LetYbethenumberoferrorshavingapprox.Pois(0.2)distribution.P(Y=k)=λke-λk!Thus,P(Y=0)=0.20e-0.20!=e-0.2=0.82

03

Given Information

Expectednumberoftypographicalerrorsis0.2.Suchthatnp=0.2Thenumberofletterisassumedtobevery,veryhigh.SincethedistributionofnumberoferrorsisBinomial,Withparametersnandp.WehaveTheexpectednumber,np=0.2Butnisunknown.Thus,pcannotbedetermined.ThenPoissonapproximationcanbeused.Withparameterλ=np=0.2LetYbethenumberoferrorshavingapprox.Pois(0.2)distribution.P(Y=k)=λke-λk!Thus,P(Y\geq2)&=1-P(Y=0)-P(Y=1)=1-e-λ-λe-λ=1-e-0.2-0.2e-0.2=1-0.82-0.164=0.016

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An ambulance travels back and forth at a constant speed along a road of length L. At a certain moment of time, an accident occurs at a point uniformly distributed on the road. [That is, the distance of the point from one of the fixed ends of the road is uniformly distributed over (0, L).] Assuming that the ambulance’s location at the moment of the accident is also uniformly distributed, and assuming independence of the variables, compute the distribution of the distance of the ambulance from the accident.

6. Let X and Y be continuous random variables with joint density function f(x,y)=x5+cy    0<x<1,1<y<50    otherwise

where c is a constant.

(a) What is the value of c?

(b) Are X and Y independent?

(c) FindP[X+Y>3]

If X and Y are independent and identically distributed uniform random variables on(0,1), compute the joint density of

(a)U=X+Y,V=X/Y;(b)U=X,V=X/Y;(c)U=X+Y,V=X/(X+Y).

Show that f(x, y) = 1/x, 0 < y < x < 1, is a joint density function. Assuming that f is the joint density function of X, Y, find

(a) the marginal density of Y;

(b) the marginal density of X;

(c) E[X]; (d) E[Y].

Consider independent trials, each of which results in outcome i, i = 0, 1, ... , k, with probability pi, k i=0 pi = 1. Let N denote the number of trials needed to obtain an outcome that is not equal to 0, and let X be that outcome.

(a) Find P{N = n}, n Ú 1.

(b) Find P{X = j}, j = 1, ... , k.

(c) Show that P{N = n, X = j} = P{N = n}P{X = j}.

(d) Is it intuitive to you that N is independent of X?

(e) Is it intuitive to you that X is independent of N?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free