Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that W, the amount of moisture in the air on a given day, is a gamma random variable with parameters (t, β). That is, its density is f(w) = βe−βw(βw)t−1/(t), w > 0. Suppose also that given that W = w, the number of accidents during that day—call it N—has a Poisson distribution with mean w. Show that the conditional distribution of W given that N = n is the gamma distribution with parameters (t + n, β + 1)

Short Answer

Expert verified

In order to obtain the required conditional distribution, use the definition of conditional PDF.

Step by step solution

01

Content Introduction

A random variable is a variable with an unknown value or a function that gives values to each of the results of an experiment. It's possible for a random variable to be discrete or continuous.

02

Content Explanation

We are required to find the distribution of W given that N = n. We have that,

fW,N(w,n)=fW,N(w,n)P(N=n)=P(N=n|W=w)fW(w)P(N=n)

Since, we have that N/W=w~Pois(w)we have that

P(N=n,W=w)=wnn!e-w

Thus,

P(N=n,W=w)fW(w)P(N=n)=wnn!e-w.βe-βw(βw)t-1τ(t)P(N=n)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An ambulance travels back and forth at a constant speed along a road of length L. At a certain moment of time, an accident occurs at a point uniformly distributed on the road. [That is, the distance of the point from one of the fixed ends of the road is uniformly distributed over (0, L).] Assuming that the ambulance’s location at the moment of the accident is also uniformly distributed, and assuming independence of the variables, compute the distribution of the distance of the ambulance from the accident.

The joint probability mass function of X and Y is given by

p(1,1)=18p(1,2)=14p(2,1)=18p(2,2)=12

The number of people who enter a drugstore in a given hour is a Poisson random variable with parameter λ = 10. Compute the conditional probability that at most 3 men entered the drugstore, given that 10 women entered in that hour. What assumptions have you made?

X and Y have joint density function

f(x,y)=1x2y2x1,y1

(a) Compute the joint density function of U = XY, V = X/Y.

(b) What are the marginal densities?

The random vector (X, Y) is said to be uniformly distributed over a region R in the plane if, for some constant c, its joint density is f(x, y) =  c if(x, y) ∈ R 0 otherwise

(a) Show that 1/c = area of region R. Suppose that (X, Y) is uniformly distributed over the square centered at (0, 0) and with sides of length 2

(b) Show that X and Y are independent, with each being distributed uniformly over (−1, 1).

(c) What is the probability that (X, Y) lies in the circle of radius 1 centered at the origin? That is, find P{X2 + Y2< 1}.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free